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Factorization of finite strains in three dimensions---a computer method 
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Ala~maei--Strain analysis using deformed objects  is already well established. The  more  sophisticated techniques 
can resolve tectonic strains and indicate the  na ture  of any pre-tectonic fabric. Methods  that  analyse in two 
d imensions  can produce problems of incompatabil i ty when results f rom three faces of one sample are combined.  

A me t hod  for factorizing finite, non-coaxial  strains is presented  which overcomes  these problems by analysing 
in three dimensions.  Published data  f rom deformed  lapiili tuff  f rom the English Lake District have been used to 
test the  method .  

Resul ts  are as valid as those  obtained originally f rom the data, and the  technique enables  strain analysis to be 
ex tended  to areas  which give imprecise results using existing methods .  

PREVIOUS METHODS 

STRAIN analysis using deformed objects and fossils is now 
well established as a tool available to the structural 
geologist. Early work by Ramsay (1967) has been 
developed by several authors (Dunnet t  1969, Elliott 
1970, Dunnet t  & Siddans 1971, Matthews et al. 1974). 
Sophisticated two-dimensional analytical methods  have 
been described which can resolve tectonic strains and 
identify various pre-strain fabrics (Dunnet t  & Siddans 
1971). Matthews et al. (1974) provide a statistical check 
on the precision of results. Oertel  (1970) has presented a 
three-dimensional analysis of the strain recorded by a 
lapillar tuff from the English Lake District. All these 
methods at tempt to resolve strain ellipses or ellipsoids 
f rom final deformed shapes. 

In both two-dimensional and three-dimensional 
methods,  the magnitude and direction of the final shape 
is measured or calculated. The amount  of data known 
about  the components  now controls the level of success 
any factorization can achieve. If both the magnitude and 
orientat ion of the latest tectonic effect are known, the 
pre-strain ellipsoid may be determined in full and can be 
further  factorized if necessary. This situation is unlikely, 
since determining the magnitude of this ellipsoid is usu- 
ally the object  of the exercise. If neither the magnitude 
nor the direction of the tectonic effect is known, no 
unique solution is possible: there are an infinite number  
of valid factorizations with no obvious method of 
selecting relevant values. 

When the direction but not the magnitude of the strain 
ellipsoid is known a suite of results again exists, but solu- 
tions can be found by selecting strain magnitudes in a 
systematic manner.  Data  in this form are most com- 
monly used for strain analyses. The best strain mag- 
nitude can be isolated by reference to the quality of the 
factorization. This may be determined statistically if pre- 
strain ellipses possessed a distinctive orientation. 
Alternatively, a particular pre-strain fabric may be pre- 
dicted from other  geological evidence. The  sequential 
selection of strain values and inspection of results forms 

the basis of many graphical and computerised strain 
analyses. 

There  are advantages in performing an analysis in 
two dimensions. Most sections through material to be 
used for this purpose will show more  than one deformed 
object,  so iterative routines can be used to examine the 
shapes of each particle as increments of strain are 
removed.  Statistical parameters  can then help to identify 
acceptable pre-strain fabrics and stop the iterative pro- 
cess. This forms the basis of the computerised Rf/tg tech- 
nique described by Dunnet t  & Siddans (1971). This 
approach is not generally applicable to three- 
dimensional methods since three sections through indi- 
vidual objects cannot be obtained unless the objects can 
be removed whole for analysis. 

The usefulness of two-dimensional analyses can 
unfortunately be marred by practical problems. To pro- 
duce results for  one face of a sample using these methods 
is straightforward and accurate, but it is possible to 
factorize incompatible pre-strain data from the three 
separate faces of one sample. The present author used 
the Rf/¢ method to analyse nine samples of cleaved 
accretionary-lapilli tuff from the Borrowdale  Group  of 
the English Lake District (Bell 1975, p. 39). Analysis of 
one specimen from Wrengill Quarry  showed that a face 
cut parallel to the cleavage plane, XY,  and one cut in the 
Y Z  plane both showed symmetric Rf/~o plots. The X Z  
face produced an asymmetric plot which, on unstraining, 
indicated a semi-planar fabric. It is unlikely that two sec- 
tions with symmetric diagrams could be found perpen- 
dicular to one another  unless the sample possessed a 
random pre-strain fabric. This result is, however,  not 
compatible with that from the third face. If the sample 
suffered no significant pre-strain deformation,  the X Z  
face, which records the greatest tectonic strain, should 
have shown the most symmetric rather  than the least 
symmetric Rf/¢ diagram. Internal inconsistencies of this 
sort occurred with seven of the nine specimens men- 
tioned above. One specimen produced a random, a 
planar and an imbricate initial fabric from three mutu- 
ally perpendicular faces. 
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It is likely that in many samples from the southeast 
Lake District the closeness of strike of the bedding to 
that of the cleavage plane, together with the steep 
plunge of the principal extension direction on the 
cleavage face (Soper & Nurnan 1974), have produced 
low precision in the Rf/q~ method. Dunnet t  & Siddans 
(1971, p. 316) have already noted that this method is 
unreliable where a bedding trace is sub-parallel to a 
principal strain direction. 

There  is advantage to be gained from combining final 
ellipse data into an ellipsoid prior to analysis if internally 
consistent factorizations can be made, but pre-strain 
fabrics must be inferred from geological evidence. For  
example, diagenetic compaction will have occurred in 
indurated sedimentary rocks, and a planar pre-strain 
fabric aligned in the bedding plane (Oertel  & Curtis 
1972) may have been formed. The recognition of such a 
fabric may be used to stop an iterative routine; this 
approach has been used in the method described here. In 
addition, some indication of the precision of results may 
be gained if error  values are carried through the analysis; 
a technique used by Oertel  (1970). 

Oertel  performed his three-dimensional analysis on a 
trial-and-error basis, using a desk calculator. This paper 
presents a computerised systematic method for the 
factorization of ellipsoids in three dimensions. 

ASSUMPTIONS 

s°t!!!l!;// / 
4.0 
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The method requires that a final deformation ellipsoid 
should be measurable, both in magnitude and orienta- s.0- 
tion. A tectonic frame must be defined. Limited 
information about  the pre-strain ellipsoid must be avail- 
able. In this respect, the assumptions required by this 4.0. 
model are no more than the three-dimensional equiva- 
lents of those that accompany the Rf/q~ method. As the 
model  is presently set up, the unstraining process is ~ 3.0. 
considered complete when an oblate pre-strain ellipsoid 
whose short axis lies normal to the pre-strain bedding 
plane is obtained. Thus the model is most suitable for 

2.0. 
factorizing a single strain ellipsoid from rocks which 
have undergone compaction during diagenesis, followed 
by one penetrative deformation. The model assumes 
that the final ellipsoid is representative of the strain the 1.0 

1.0 
sample has suffered. All ellipsoids are expressed 
assuming constancy of volume. 

THE METHOD 
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A computer  programme has been written in FOR-  
T R A N  IV to perform the factorization of the measured 
final ellipsoid into ellipsoids oriented in a tectonic strain 
frame and a pre-strain frame. Listings are available as an 
open-file report  of the Geological Survey of Ireland. In 
the test case presented here, Oertel 's  (1970) published 
data are used, data being derived from an accretionary- 
lapilli tuff cut by a slaty cleavage. The cleavage plane, X~ 
Y~, and the extension lineation within it, X s, have been 
used to define the tectonic frame. The  bedding plane 
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Fig. 1. STORE 1, STORE 2 and STORE 3 after factorization. (a) 
Contoured Flinn plots showing oblateness of the pre-strain ellipsoid 
(STORE 1) and its orientation relative to the pre-strain bedding plane 
(STORE 2). The intersection of minimum curves (broken lines) 
locates the tectonic ellipsoid. (b) Flinn plot showing area of valid 

factorizations (STORE 3). 

defines an orientation for the pre-strain ellipsoid Xi, Yi, 
Z~. Throughout  the calculation the cleavage frame is 
used as a reference frame. 

Average final ellipses for three mutually perpen- 
dicular faces are calculated from two-dimensional data 
using programme S TRA N E presented by Dunnet t  & 
Siddans (1971). The method described by Ramsay 
(1967, section 4.7) has been used to combine these 
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ellipses into a final ellipsoid, although refinements to 
this technique now exist, such as that developed by W. 
H. Owens (presented to the Annual Meeting of the Tec- 
tonic Studies Group, Liverpool,  1978). This ellipsoid is 
represented in matrix form and rotated from its principal 
reference frame into the tectonic frame using matrix ver- 
sions of equations 3-18 of Ramsay (1967). 

The strain analysis is then performed in two parts. 
Firstly, the final ellipsoid is unstrained using Ramsay's 
(1967, p. 92) equations, again in matrix form. A pre- 
strain ellipsoid is obtained by the systematic 
superimposition of various reciprocal strain ellipsoids on 
the final shape. For  this initial analysis, 81 strain ellip- 
soids are chosen by a systematic scan of the Flinn plot 
(XJY,  = 1.0, 1.5, 2 . 0 , . . . ,  5.0; Ys/Z, = 1.0, 1.5, 2.0, 
. . . . .  5.0) and these strains removed in turn from the 
final ellipsoid. The bedding plane is also restored to a 
pre-strain orientation using equations 4.21 of Ramsay 
(1967). Results of this scan are recorded in S T O R E  1, 
S T O R E  2 and S T O R E  3 (Figs. l a  & b). 

S T O R E  i records a measurement  of the difference in 
length between the two axes of the pre-strain ellipsoid 
that lie in the pre-strain bedding plane, contoured from 
the 81 data points described above. S T O R E  2 records 
the sum of the absolute values of the off-diagonal ele- 
ments of the representat ion matrix of the pre-strain 
ellipsoid, and represents the alignment of the pre-strain 
ellipsoid with respect to the pre-strain bedding plane. 
S T O R E  3 indicates the orientation of the shortest axis of 
the pre-strain ellipsoid. If that short axis lies approxi- 
mately normal to the pre-strain bedding plane, S T O R E  
3 records a value of zero. If, however,  the short axis lies 
closer to the bedding plane, warning values are given. 
Since results occupy the same location in S T O R E  as the 
strain ellipsoid used for unstraining occupies on its Flirm 
plot, a number  other  than zero in a particular site in 
S T O R E  3 indicates that the tectonic strain represented 
by that site is incapable of producing a satisfactory 
factorization. 

The  three S T O R E  tables give direct information 
about the nature of the faetorizations for a large range of 

strains. For  example, if a strain ellipsoid whose Flinn 
parameters are XJY,  = 1.5; Ys/Z, = 2.0 is removed from 
the final shape (Fig. 1), the parameter  representing the 
difference in length of the two axes which lie in the res- 
tored bedding plane (STORE 1) has a value of 0.049. 
S T O R E  3 indicates that, in this site, these two axes are 
indeed Xi and Yi. If a more  prolate strain ellipsoid is 
removed (reading upwards keeps YJZ, = 2.0, but 
increases XJY,  through 1.5, 2.0, 2.5 . . . .  to 5.0), the 
difference between the long and intermediate axes of the 
pre-strain ellipsoid decreases, but the orientation of that 
ellipsoid (STORE 2), although at first improving, 
quickly becomes less well aligned in the pre-strain bed- 
ding frame. When the higher strains are removed,  a 
more  oblate pre-strain ellipsoid is factorized, although it 
is less well oriented in the bedding than it was after the 
removal of a strain of X]Ys = 2.0. Therefore,  the lower 
the combined values bf S T O R E  1 and S TOR E 2, the 
closer that strain is to providing the best factorization. 
Figure 1 represents contoured values of S T O R E  1 and 
S T O R E  2 for this test case. It can be seen that a 
minimum occurs in both tables near the value XJY,  = 
W Z ,  = 2.0. 

A more  accurate determination of this minimum is 
made in the second part of the strain analysis. The rows 
of the Flinn plot are scanned at inter~als of 0.1 XJY,  for 
S TO RE 1 and the columns scanned at intervals of 0.1 
YJZ~ for S T O R E  2 to locate accurately the 'valleys' in 
Fig. 1. The point of intersection of the two 'valleys' 
locates the tectonic ellipsoid which, when removed from 
the final ellipsoid, gives a pre-strain factor which is 
almost oblate and whose, axes lie close to the bedding 
frame. This is found by selecting a polynomial which best 
fits the minimum points defining the 'valley' of each 
STORE.  Cubits  have been fitted to avoid the unwanted 
points of inflexion generated by polynomials of greater 
orders. These curves are indicated by dashed lines in Fig. 
1. The  point at which the two cubics intersect locates the 
required tectonic ellipsoid. In the programme, this is 
achieved by the standard technique of equating the two 
polynomials and finding the roots of the resulting cubic. 

Table 1. Summary of input data and results from the present method. Orientations relative to computing frame. Input data 
after Oertel (1970) 
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Three  roots exist, of which only one is meaningful to the 
strain analysis. It frequently happens, though, that one 
or both of the other  roots lie within the range of the Flinn 
plot. 

For each root  within the range, the strain analysis is 
repeated and the pre-strain matrix and restored bedding 
plane re-calculated. Each pre-strain matrix is then 
diagonalized to obtain its true magnitude and orienta- 
tion, and the matrix, together with its principal axial 
lengths and orientations, printed out. The strain value 
which gives the best results may then be selected by 
inspection. 

A summary of the output  from the programme for this 
test case is given in Table 1. A successful factorization 
has been achieved (Root  1). The resolved pre-strain 
ellipsoid is oblate to within two decimal places and the 
short axis lies within half a degree of the pole to the pre- 
strain bedding plane. Figure 2 shows the magnitude and 
true orientation of the final, strain and pre-strain ellip- 
soids. The pre-strain ellipsoid is oriented in the pre- 
strain bedding frame for all practical purposes (Fig. 
2b). 

DISCUSSION 

This result is as acceptable a factorization as that made 
originally by Oertel  (1970, p. 1182), but the tectonic 
ellipsoid determined by the present method is signific- 
antly different from Oertel 's  (X/Y~ = 1.865, YJZs = 
2.056, compared with X/Y,  = Y/Zs = 2.0 by Oertel).  
The more prolate value of Oertel 's  cleavage ellipsoid 
(K= 1.000 against K =  0.818 from the present method) 
requires the eofactorization of an oblate spheroid of gre- 
ater axial ratios than that produced here. 

The existence of two distinct, but equally acceptable, 
factorizations requires closer examination. Figure 1 
shows that cleavage ellipsoids with one particular Ys/Zs 
value (YJZ~= 2.0) produce oblate pre-strain ellipsoids 
for most stages of this process. The 'best '  cleavage ellip- 
soid is controlled by the orientation of that oblate 
spheroid. A zone of cleavage strains exists in which the 
oblate spheroid lies almost in the bedding frame. This 
zone extends from XJY~ = 1.87 to Xs/Y~ = 2.00. There  
is, therefore,  a set of results which fall within the accept- 
able error  limits. All give similar values for both strain 
and pre-strain ellipsoids, but results within this zone, 
which factorize more prolate strain ellipsoids, also fac- 
torize more deformed pre-strain ellipsoids. In general, 
methods of analysis that scan in intervals, whether 
computerised or not, are unlikely to locate an exact 
answer and only allow a close approximation to the exact 
answer to be found. The errors here are, however, of a 
similar order  to those incorporated during the measure- 
ment of the deformed objects initially, so may be 
included within acceptable observational limits. In this 
context it is generally unwise to lay too much emphasis 
on the actual numerical value produced by strain 
analysis. 

The above method allows only two component  ellip- 
soids to be factorized. In many situations the rock has 
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O Final ellipsoid 
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Q Pre-strain ellipsoid 

Fig. 2. Magnitude and actual orientation of component ellipsoids. (a) 
Flinn plot. (b) Equal-area, lower hemisphere projection. EUip- 
soids---X > Y >  Z. Cleavage plane--solid line. Deformed bedding 
-- long broken line (pole S'). Pre-cleavage bedding plane--short  

broken line (pole S). 

suffered more than two deformations, in others the mea- 
sured particles may have had a significant pre- 
compaction shape. Additional strains, or particle shape 
variation, may themselves be represented by ellipsoids. 
These effects will have been factorized into components  
and included into the values for the two primary factors. 
It should not, therefore,  be assumed that the resolved 
ellipsoids represent actual strain or pre-strain ellipsoids 
in every case. Care should be taken in interpreting 
results from methods of this kind, and an input of extra 
geological information is almost always necessary. 

Finally, no factorization method that selects mag- 
nitude values for strain ellipsoids with reference to the 
pre-strain shape is capable of producing more than two 
components.  It is not acceptable to extend the analysis 
by subjecting either component  to refactorization. 
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